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INTRODUCTION 

THE TRANSIENT, non-convective conduction of heat or 
diffusion of solute in composite media is important in several 
applications. In thermal storage in packed beds, for example, 
stratification in the non-flow mode deteriorates with time, 
i.e. the temperature gradient dissipates [l, 21. Diffusion in 
arrested-flow chromatography also involves transient be- 
havior as the stationary band of solute spreads in either 
direction in the column [3]. Other composite materials, e.g. 
cement with embedded gravel, are in the category studied 
here. 

For isotropic composite media with different conductivity 
properties in the continuous and particle phases, relaxation 
to the quasi-steady state cannot be described by the simple 
effective conductivity equation, which for one-dimensional 
transport is 

aA/at = k,,azAjaz’ (1) 

where k., is the effective conductivity or diffusion coefficient, 
Kirkpatrick 141 showed that the relaxation to steady state 
for diffusion in a medium of randomly-distributed spherical 
traps could not be so represented. Park and McCoy [5] 
examined the conditions under which conduction or dif- 
fusion in a composite medium composed of widely-spaced, 
fixed spheres could be mathematically described by an effec- 
tive conductivity or diffusivity. Criteria in terms of the Biot 
number, and the ratio of particle to external phase volumes 
were formulated for equilibration of particles with the sur- 
rounding material. 

Our objective in this note is to develop an analytical 
approach for computing transient temperature or con- 
centration profiles in both the continuous and particle phases 
for arbitrary initial conditions. The procedure makes use of 
the parabolic profile approximation for individual particles 
[6]. A restriction due to the uniform boundary conditions 
that are assumed for the surface of a particle is that the 
particles are small and spaced far apart. A Fourier transform 
solution allows the generation of spatial moments for an 
impulse response, which, being symmetrical, is modeled as a 
Gaussian profile. By utilizing the superposition principle 
resulting from the convolution of Fourier transforms, we 
express the response to a general initial condition, Results 
are presented for transient profiles in both the continuous 
and particle phase due to the impulse, pulse, step, and ramp 
initial conditions. After sufficient time has elapsed, the longi- 
tudinal profiles in the two phases become identical. For a 
composite medium the theory utilizes the superposition 
theory described by Crank [7] and by Carslaw and Jaeger 
[8], previously applied only to a single-phase medium, and 
now extended to the present two-phase composite. 

THEORY 

We consider a composite of equal-sized spheres in a homo- 
geneous and continuous matrix. Table 1, defining pertinent 
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Table 1. Definition of dimensionless quantities for non-con- 
vective mass and heat transfer 

Variables 
and 

parameters 
Mass Heat 

transfer transfer 

A 
C 
X 

Y 

; 
Bi 

(cl-G)/(Cll-%) Vs- T,)I(T,- Tb) 
(c- fN$- Cb) V- TtN(~o- Tb) 

rlR 

zlR zlR 
D,tlBR 2 K,tIR’ 

BD,W, ~,I~% 
k,RIQ h,Rlk, 

dimensionless groups, shows the analogy between mass and 
heat transfer. With the analogy, the development shown 
below in terms of dimensionless quantities is applicable to 
both conduction and diffusion problems. An assumption in 
what follows is that the temperature or concentration at a 
particle surface is uniform. Ideally this holds exactly only for 
widely separated particles in a slight gradient field, but can 
be nearly true for packed beds if the gradient is not too large. 

The mass or heat balance equation for the homogeneous 
material surrounding the spheres is, in dimensionless form 

na+2jayz-3(j3/cr)(1 -a)(aA/ax),,, = acjaT. (2) 

The heat or mass diffusion balance equation for a particle is 

1 a ,aA aA 

--“ax=% x2 ax ( > 
(3) 

For initial conditions, we considered in our earlier work [S] 
an impulse of heat or mass with the magnitude To- Tb or 
c,,-cr, in the continuous phase. For the present study we 
consider a general initial condition for the continuous phase, 
i.e. B(y) 

C(Y, r = 0) = B(Y) (4) 

A&r = 0) = 0. (5) 

The boundary conditions are 

C(y+kco,r)=O (6) 

(aAjax),= o = 0 (7) 

(aAjax),=, = si[c-(A),= ,I. (8) 

In equation (6) we consider a medium that is very large 
relative to particle diameter, and in equation (7) we let the 
intraparticle profile be symmetric. Equation (8) equates the 
fluxes on the inner and outer sides of the particle surface. 
For non-flow conditions in packed beds Bi is usually taken 
to be infinite [9]. For some cases, however, Bi would be finite, 
for example, for fouled particles coated with a thin insulating 
or mass transfer resistant material. 

As the exact solution to the preceding equations is an 
unwieldy infinite series ill-suited for integration, we invoke 
the parabolic profile assumption of Do and Rice [6], who 
showed that for r > 0.05 

A = m, +m,x*. (9) 
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NOMENCLATURE 

aI parameter, defined by equation (19) 

a* parameter, defined by equation (19) 
,4(x, Y, t) dimensionless concentration or 

temperature inside particles, defined in 
Table 1 

A(Y, T) volumetric mean of A@, Y, r) for spherical 

a (7) 

particles 
Fourier transform of A( v. t) 

B&l 
\,I I 

B 
initial condition, C(Y, r = 0), equation (4) 
Fourier transform of B(y) 

Bi Biot number, defined in Table 1 
C(x, Y, T) dimensionless concentration or 

temperature in continuous phase, defined 
in Table 1 

c concentration in continuous phase 
[mol m- ‘1 

cl constant, defined by equation (19) 

c* constant, defined by equation (19) 

Cb concentration particle pores at t = 0 
[mol m- ‘1 

c, concentration in particle pores [mol m- ‘1 

co magnitude of concentration impulse 
[mol m- ‘1 

Q intraparticle diffusivity [m’s_ ‘1 

D” effective diffusivity in continuous phase 
[m’s_‘] 

E, parameter, defined by equation (19) 

E* parameter, defined by equation (19) 
h constant, defined in equations (31) and 

(33) 
h, fluid-to-particle heat transfer coefficient 

[Wm-*K-l I 
k, defined by equations (16)-( 18) 
k sff effective thermal diffusivity or mass 

diffusivity [m* s- ‘1 

k, fluid-to-particle mass transfer coefficient 
[ms-‘1 

Q 

x 
T 

Tb 
TO 
i-8 
t 
U(Y) 
x 

Y 

z 

thermal conductivity of particle 
[Wm-‘K-‘1 
parameter, defined by equation (19) 
radial coordinate in spherical particle [m] 
radius of spherical particle [m] 
temperature of continuous phase [K] 
intraparticle temperature at t = 0 [K] 
temperature of thermal impulse [K] 
temperature of particle [K] 
time [s] 
unit step function 
dimensionless radial coordinate in spherical 
particle, defined in Table 1 
dimensionless longitudinal coordinate, 
defined in Table 1 
longitudinal coordinate in composite 
medium [ml. 

Greek symbols 

; 

volume fraction of continuous phase 
porosity of particle (for diffusion) 

Y B( 1 -Go/a 
6(Y) Dirac delta function 
K dimensionless Fourier domain variable 

KS thermal diffusivity of particle [m2 s- ‘1 

K” effective thermal diffusivity of continuous 
phase [m’s_ ‘1 

1 ratio of diffusivities or conductivities, 
defined in Table 1 

PC,, dimensionless nth spatial moment, generated 
by A, defined by equation (20) 

PC. dimensionless nth spatial moment, generated 
by C, defined by equation (21) 

r variable of integration in equations (27) and 

(28) 

; 

dimensionless time, defined in Table 1 

-k, I(1 f?)T. 

Tomida and McCoy [IO] recently demonstrated that if this 
polynomial is extended indefinitely, the solution is exact. 
Following Do and Rice it is not difficult to show that 

@A/8x),, , = (5/(1+5/Bi))exp(-15r/(l +S/Bi)) (10) 

a&% = (15/(1+5/Bi))(C-A) (11) 

in terms of 2, the volume average over the spherical particles. 
The Fourier transforms for equations (2), (lo), and (11) 

can be written as 

dA^/dT = k,,/i+k,*t (12) 

dC/dr = k*,A^+k**d (13) 

and initial conditions (4) and (5) become 

C(r = 0) = B (14) 

A(r=O)=O. (15) 

The coefficients in equations ( 12) and (13) are given by 

k,, = -k,* = -15/(1+5/W) (16) 

k*, = k,,B(l -a)/& (17) 

k,, = AK*-k*,. (18) 

The Fourier domain solution for equations (12)(15) can 
easily be obtained as 

where 

E, = (k,, +k**)(t -Q)P 

& = (k,,+k,,)(l+QP 

Q = [l+‘V,*k*~ -k,,k**Mk,, +k**)*l”* 

a, = -a* = -B/(fi -f*) 

Cl = B-c* = &,/(f, -f*) 

fi = (-El +k,, +k*,)l(-E, +k,*+k**) 

f* = (-E*+k,,+k*,)/(-E*+k,*+k**). 

Spatial moments are generated by a and C according to 

= (- l)*[li~d”Fi,drl]/& (20) 

= (- l).[!lizd’C/dti]/8. (21) 

A =B(a,eEl’+a*e”*‘), C=B(c,eEl’+c*eEz’) (19) From equations (12)-(21) the first three moments are 
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obtained as follows : 

LA$ = (1 -e-W +Y) 

k,(r) = (1 +F”)itl -i-y) 

1L.4,(,9 =/k,(r) = 0 

(22) 

(23) 

(24) 

where 

and k,, is given by equation (16). The second moment 
expressions in ref. [S] should be corrected to agree with these. 

After approximating the developing profiles of 2 and C 
for impulse input (B(y) = b(y)) as Gaussian functions, 
we can obtain the general solutions using the convolution 
theorem [7,1 I], i.e. 

Now, from equations (21)-(27), responses for pulse, step, 
and ramp functions can be obtained as follows : 

pulse responses 

step responses 

(3’5) 

ramp responses 

2(.&r) = B(y-~)(A(5,T)irnpulre)d5 (27) 

where the impulse responses are given as 

Gap”!, = ---/1CO--exp ( -y2/2gcJ. 
(2nJ+)“’ 

(30) 

RESPONSES FOR SPECIFIC INITIAL 
CONDITIONS 

(3% 

We consider several generalized functions as initial con- 
The rectangular pulse responses and the step responses are 

d&ions for C(y, r) : 
plotted in Figs. 1 and 2, respectively. 

the rectangular puke 0ISCUSSl0N 

KY) = [U{-(y-h)J-U(-(y+h)}l/2h; (31) After the transient has passed, radial gradients within the 

the step particles subside as shown in Figs. 1 and 2, and a quasi-steady 

B( J’) = U( -Y) ; (32) 
state spreading of the profiles continues. The relationship for 
the area under the profiles in Fig. 1 is given as 

the ramp sr m 

B(y)=a{-(?;-h)jtLi(-(y-h)j s 
c(j’,T = 0)dy = 

-m I 
C(Y, r)d,v 

- ai 

-u{ -b+h))l+ u{ -0,+&l. (33) 
+BU-a) .z 

lx s 
~(.~>r)dy. (40) 

--33 

0 

-2.4 -1.6 -0.8 0 0.8 1.6 2.4 

Y 

FIG. I. Time dependence of profiles inside particle, A, and in continuous phase, C, for i, = 1.3, 
PfI -LZ)/E = l.S, h = 0.5, and Bi = co. Initial condition is a spatial rectangular pulse of tracer in the 

continuous phase. 
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Y 

FIG. 2. Time dependence of profiles inside particle, 2, and in continuous phase, C, for I = 1.3, 
/I(1 -x)/u = 1.5, and Bi = co. Initial condition is a spatial step of tracer in the continuous phase. 

When time becomes infinite, C equals A and equation (40) 
becomes 

= jl+~}S_:z@v.r)d~. (41) 

The relative areas under the curves in Fig. 1 are due to 
transfer of heat or mass from the continuous phase to the 
particles, and are determined by the value, /I( 1 - a)/a = 1.5. 
The asymptote on the negative y-axis in Fig. 2 for t = 1, 
which has the value [ 1 +/I( 1 -a)/a]- ’ = 0.4, is likewise due 
to this transfer to the particles. 

The rectangular pulse response, Fig. 1, resembles the 
impulse response in shape, and as time increases, the two 
responses become more alike. The ramp response resembles 
the step response, Fig. 2; and as time increases, these two 
also become more alike. 

For times greater than the transient, an effective con- 
duction or diffusion coefficient should apply. Expressions for 
such effective transport parameters have been developed by 
Maxwell [ 121 and by Jeffrey [ 131, for example. As the present 
mode1 does not account for longitudinal gradients across 
the particles (only radial gradients are included), correct 
expressions for effective coefficients for densely packed 
spheres cannot be manifested by the present model. Thus, a 
restriction that holds for long time (T >> 1) is that the volume 
fraction of the particle phase is very small compared to the 
continuous phase (1 -a << I). This ensures that the con- 
tribution of the particle phase is negligible during the quasi- 
steady state transport process. This restriction is consistent 
with the boundary condition for radial symmetry, equations 
(7) and (8). A complete theory for the entire time domain 
for composite media conduction would include longitudinal, 
as well as radial, temperature gradients within the particles. 
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